PFAS and HRMS: What Will You Miss With Conventional LC-MS/MS?

Christopher P. Higgins

Professor, Civil and Environmental Engineering Colorado School of Mines, Golden, CO

chiggins@mines.edu

Acknowledgements

PhD Students Stefanie Shea Kat Mills Juliane Brown Anastasia Nickerson John Stults Karl Oetjen, PhD Xin Xiao, PhD (visiting) CoSPH Bridget Ulrich, PhD Andrea Blaine, PhD Jennifer Guelfo, PhD

MS Students

Courtney Rich David Azzolini

Meghan McGuire

Tim Appleman

Sarah Mass

Jennifer Field Oregon State John Adgate Anne Starling Kelsey Barton

Collaborators

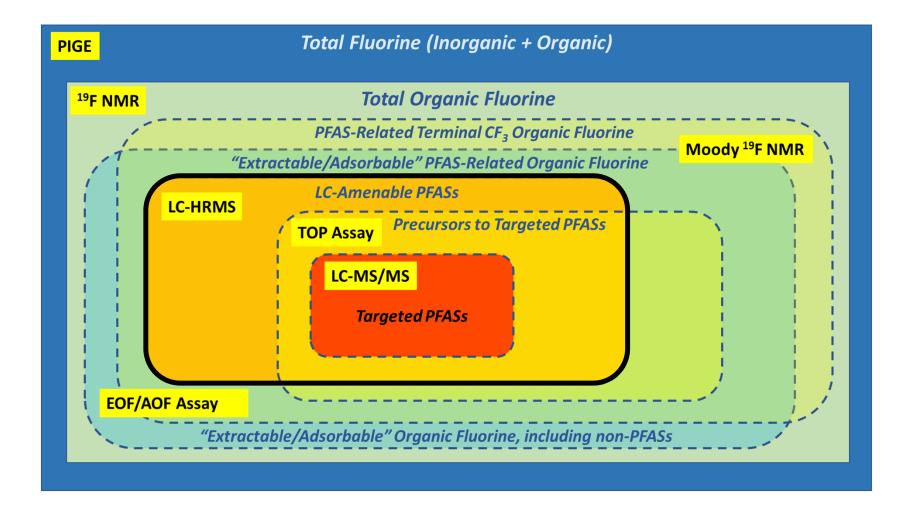
Loretta Fernandez Northeastern

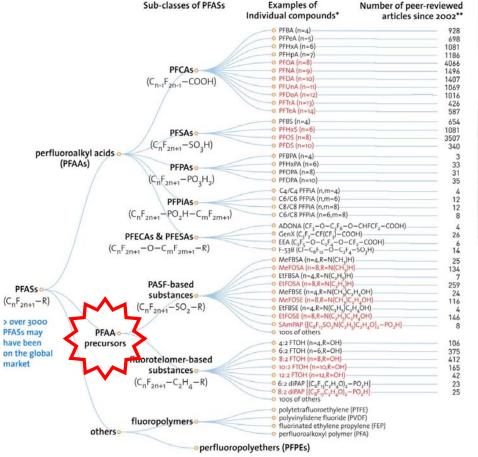
> John Kornuc U.S. Navy

Dave Adamson Poonam Kulkarni GSI

Postdoctoral Fellows

Jessie Meeks Sarah Choyke Joe Charbonnet Youn Jeong Choi Carrie McDonough Andrew Maizel Nikki Fitzgerald Erica McKenzie Simon Roberts Aniela Burant





McDonough et al., 2019, Current Opinion in Environmental Science & Health. https://doi.org/10.1016/j.coesh.2018.08.005

PFAS Family Tree: It's not just PFOS and PFOA

THE FLUORINE DETECTIVES RESEARCHERS ARE BATTLING TO IDENTIFY AND ASSESS A WORBYING CLASS OF

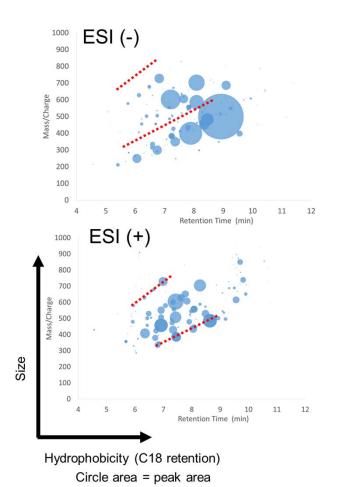
AND ASSESS A WORRYING CLASS OF PERSISTENT CHEMICALS.

BY XIAOZHI LIM

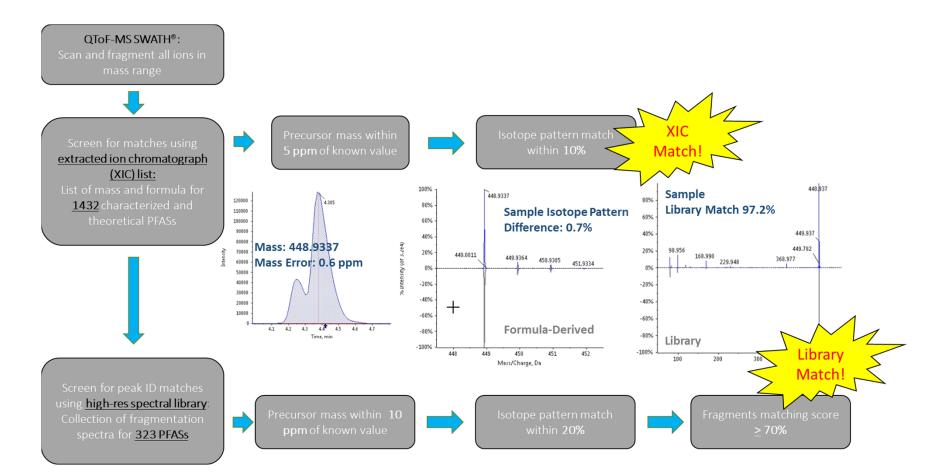
Nature, 566 (26) 2019

PFASs in RED are those that have been restricted under national/regional/global regulatory or voluntary frameworks, with or without specific exemptions (for details, see OECD (2015), Risk reduction approaches for PFASs. http://oe.cd/1AN).
The numbers of articles (related to all aspects of research) were retrieved from SciFinder® on Nov. 1, 2016.

But what's actually in AFFF-impacted samples?

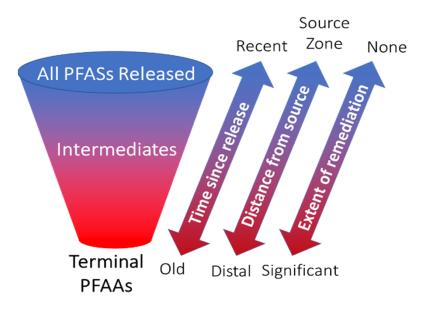


Article pubs.acs.org/est


Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater

Krista A. Barzen-Hanson,[†][©] Simon C. Roberts,^{⊽,‡} Sarah Choyke,[§] Karl Oetjen,[‡] Alan McAlees,[∥] Nicole Riddell,[∥] Robert McCrindle,[⊥] P. Lee Ferguson,[§] Christopher P. Higgins,^{*,‡} and Jennifer A. Field^{*,#}

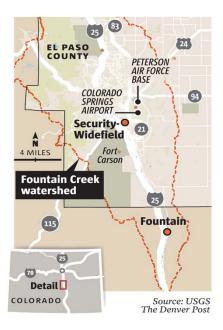
- Do we really need to look for >1400 PFASs in all samples?
- Some of these are just hypothetical, and others may never leave the source zone
- What is actually in samples impacted by AFFF?

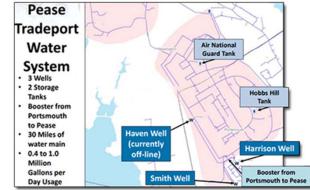


HRMS Suspect Criteria for PFAS

Transport and Transformation

Complexity varies with time, space, and remedial history

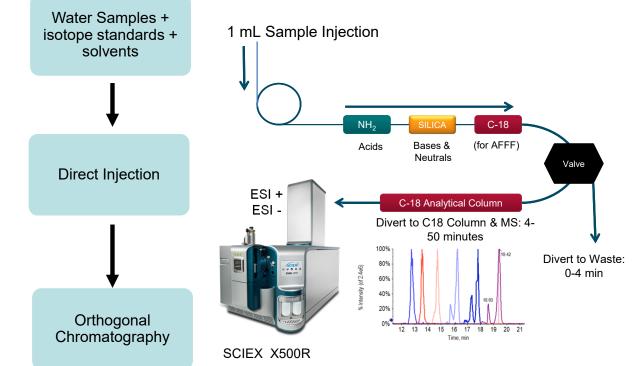

Some PFASs are known degradation intermediates of those in AFFF, but also consumer products



A tale of two sites: Peterson and Pease

- Security, Fountain, and Widefield in Colorado
 - Water sampled (untreated public and private wells)as part of an NIH R21 co-hort analyses
 - Median serum levels of PFHxS are ~10x NHANES
 - Both private and public wells sampled

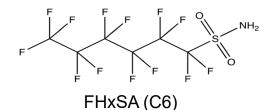
- Pease Tradeport in New Hampshire
 - Water sampled in Portsmouth, NH as part of a privately funded study of water
 - Both untreated and treated (carbon) water analyzed over time

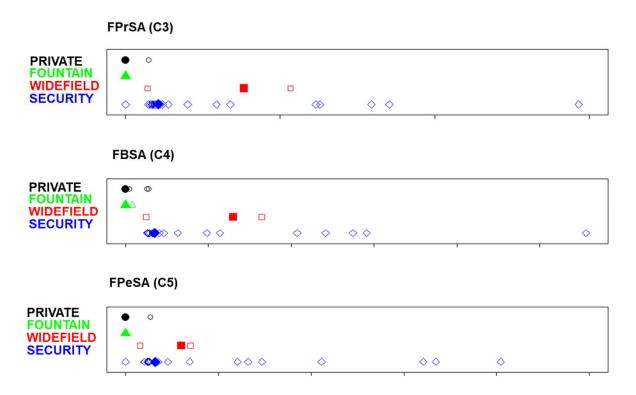


https://pfasproject.com

Barton et al., 2020, International Journal of Hygiene and Environmental Health. https://doi.org/10.1016/j.ijheh.2019.07.012

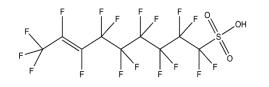
Water Analysis by LC-Q-ToF-MS


- To avoid bias, we prefer a "whole tube" direct injection approach
 - 7 mL of water in a 15 mL tube
 - Add stable isotopes and various solvents to minimize losses and ensure consistencies during transfers
 - Separate injections for ESI+ and ESI-
 - Data acquired in SWATH mode

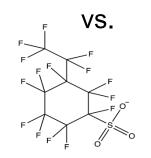

Backe et al., 2013, ES&T; Barzen-Hanson and Field, 2015, ES&T Letters. Murray et al., 2019. J. Haz. Mat, https://doi.org/10.1016/j.jhazmat.2018.11.050

Colorado Wells: Sulfonamides frequently detected

Homologs of FOSA (C8)
very frequently detected

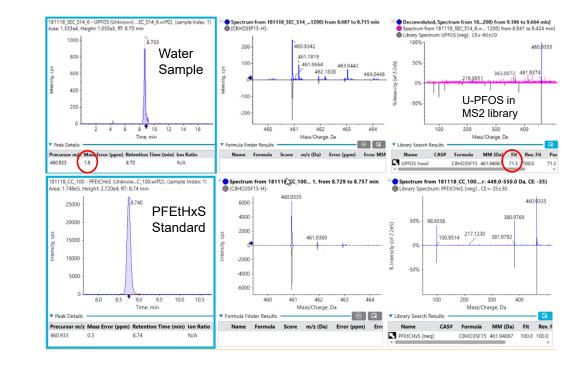


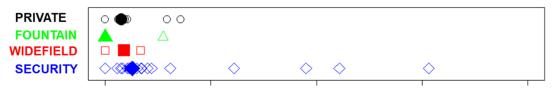
Generally, Private wells ~
Fountain < Widefield <
Security



Private wells: circles; **Fountain:** triangles; **Widefield:** squares; **Security:** diamonds **All quantities are relative – no concentrations (yet) available* Filled Shapes are **Median**: 50% of values are lower, 50% are greater, than this value

Colorado Wells: UPFOS or PFEtCHxS?


U-PFOS (no standard)

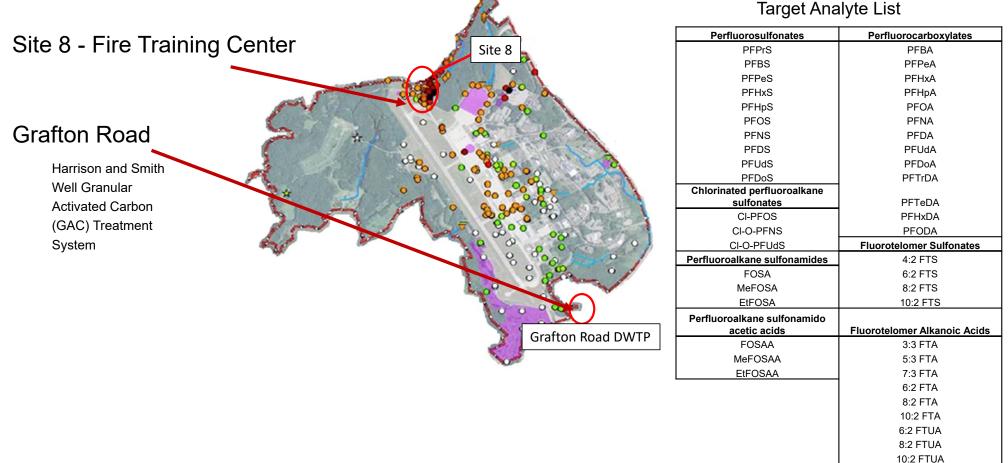


PFEtHxS (has standard)

- Retention time, parent ion mass (<5 ppm), and isotope patterns consistent with both
- MS2 data somewhat ambiguous

Private wells: circles; **Fountain:** triangles; **Widefield:** squares; **Security:** diamonds **All quantities are relative – no concentrations (yet) available* Filled Shapes are **Median**: 50% of values are lower, 50% are greater, than this value

PFASs in Untreated Colorado Well Water


In summary, four PFASs frequently detected (found in > 70% of Colorado well samples):

- C3-C5 perfluoroalkyl sulfonamides (FASAs) FPrSA, FBSA, FPeSA
- One cyclic and/or unsaturated sulfonate PFEtCHxS/U-PFOS

What was sporadically detected?

Compounds	Percent Detection
C6 FASA (FHxSA)	32%
C5, C6 Sulfinates (PFHxSi, PFPeSi)	3%; 13%
Keto-sulfonates (K-PFOS; K-PFHxS)	8%; 3%
Various substituted sulfonamides	3-45%

Pease Tradeport, New Hampshire

Target Analyte List

Pease Water Results: Site 8

48 PFASs detected on suspect list

PFAA derivatives ECF precursors FT precursors

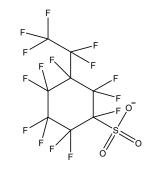
PFEtCHxS	O-perfluorosulfonates (i.e., O-PFHxS; C6-C10)	
H-PFDS	U-perfluorosulfonates (i.e., UPFHxS; C6, C9)	
H-UPFOS	K-perfluorosulfonates (i.e., K-PFHxS; C5, C6, C8)	
F5S-PFOS	Perfluorosulfinates (i.e., PFPeSi; C5-C6)	
PeH-FHpOS	H-perfluorocarboxylates (i.e., H-PFHpA; C7, C8, C10)	
SPrAmPr-FHxSAA	Perfluoroalkane sulfonamides (i.e., FHxSA; C3-C6)	
CMeAmPr-FHxSA	SPr perfluoroalkane sulfonamides (i.e., SPr-FHxSA; C4-C6)	
6:2 UFTS	SPrAmPr perfluoroalkane sulfonamides (i.e., SPrAmPr-FHxSA; C4-C6)	
6:2 FTSO2PrA	SPrAmPr perfluoroalkane sulfonamide PrS's (i.e., SPrAmPr-FHxSAPrS; C5-C6)	
8:2 FTSO2PrAd-DiMeEtS	S-OHPrAmPr-perfluoroalkane sulfonamides (i.e., S-OHPrAmPr-FHxSA; C5-C6)	

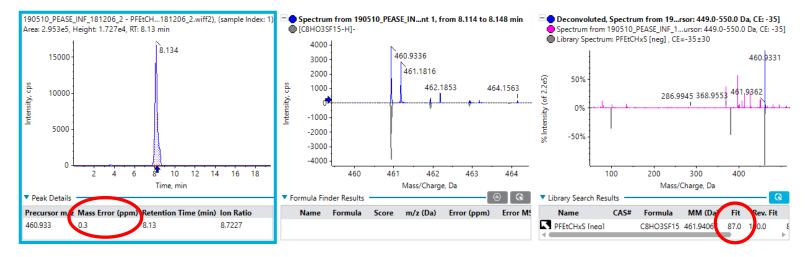
S-OHPrAmPr perfluoroalkane sulfonamido OHPrS's (i.e., S-OHPrAmPr-FHxSA-OHPrS; C5-C6) diOHPrAm-MeOHPr perfuoroalkane sulfonamido PrS's (i.e., diOHPrAm-MeOHPr-FHxSAPrS; C4-C6) X:2 fluorotelomer SO2PrAd-DiMeEtS's (i.e., 6:2 FTSO2PrAd-DiMeEtS; 4:2, 6:2, 8:2) X:2 fluorotelomer SO-PrAd-DiMePrS's (i.e., 6:2 FTSO-PrAd-DiMePrS; 6:2, 8:2)

Pease Water Results: Grafton Influent

5 PFASs detected on suspect list

PFAA derivatives ECF precursors FT precursors

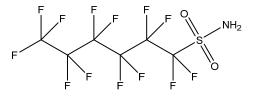

PFEtCHxSO-perfluorosulfonates (i.e., O-PFHxS; C6-C10)H-PFDSU-perfluorosulfonates (i.e., UPFHxS; C6, C9)H-UPFOSK-perfluorosulfonates (i.e., K-PFHxS; C5, C6, C8)F5S-PFOSPerfluorosulfinates (i.e., PFPeSi; C5-C6)PeH-FHpOSH-perfluorocarboxylates (i.e., H-PFHpA; C7, C8, C10)SPrAmPr-FHxSAAPerfluoroalkane sulfonamides (i.e., FHxSA; C3-C6)CMeAmPr-FHxSASPr perfluoroalkane sulfonamides (i.e., SPr-FHxSA; C4-C6)6:2 UFTSSPrAmPr perfluoroalkane sulfonamides (i.e., SPrAmPr-FHxSA; C4-C6)6:2 FTSO2PrASPrAmPr perfluoroalkane sulfonamide PrS's (i.e., SPrAmPr-FHxSA; C5-C6)8:2 FTSO2PrAd-DiMeEtSS-OHPrAmPr-perfluoroalkane sulfonamides (i.e., S-OHPrAmPr-FHxSA; C5-C6)

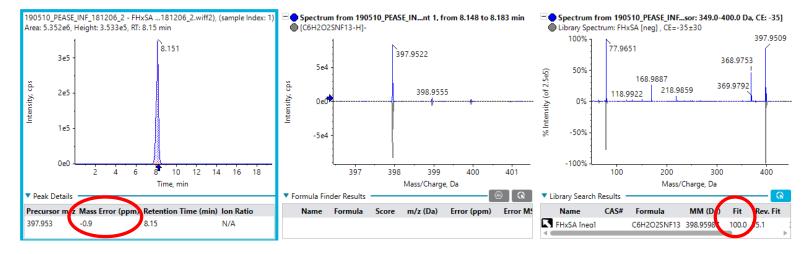

S-OHPrAmPr perfluoroalkane sulfonamido OHPrS's (i.e., S-OHPrAmPr-FHxSA-OHPrS; C5-C6) diOHPrAm-MeOHPr perfuoroalkane sulfonamido PrS's (i.e., diOHPrAm-MeOHPr-FHxSAPrS; C4-C6) X:2 fluorotelomer SO2PrAd-DiMeEtS's (i.e., 6:2 FTSO2PrAd-DiMeEtS; 4:2, 6:2, 8:2) X:2 fluorotelomer SO-PrAd-DiMePrS's(i.e., 6:2 FTSO-PrAd-DiMePrS; 6:2, 8:2)

All 5 PFASs also detected in untreated Colorado wells

Pease Grafton Influent: PFEtCHxS

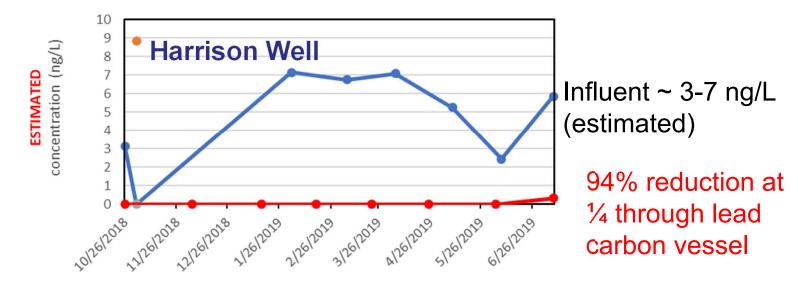
Detected in 4 of 10 influent samples





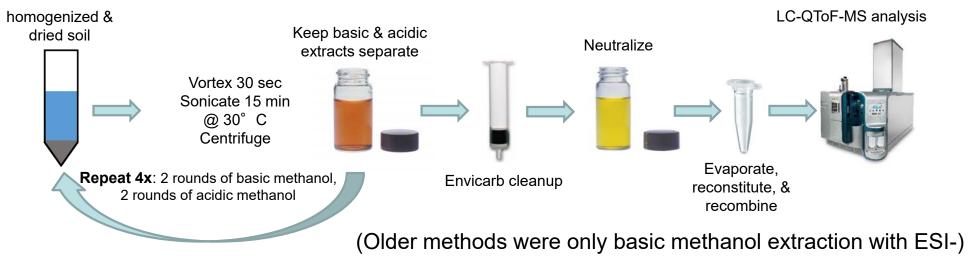
 Not detected at "25%" point in carbon vessel or in lag vessel effluent

Pease Grafton Influent: FHxSA


• Detected in 8 of 10 influent samples

• Not detected in lag vessel effluent

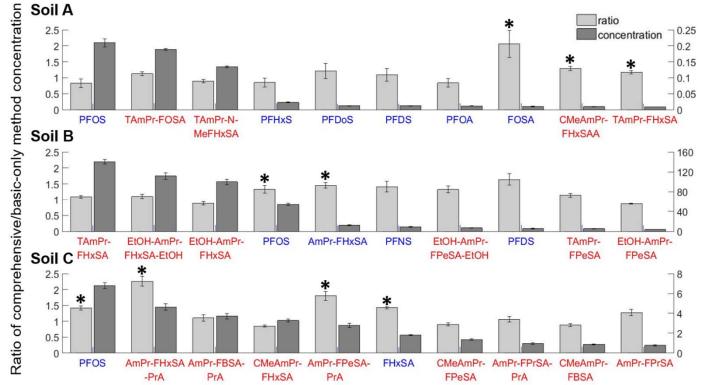
Pease Water: Grafton FHxSA Profile



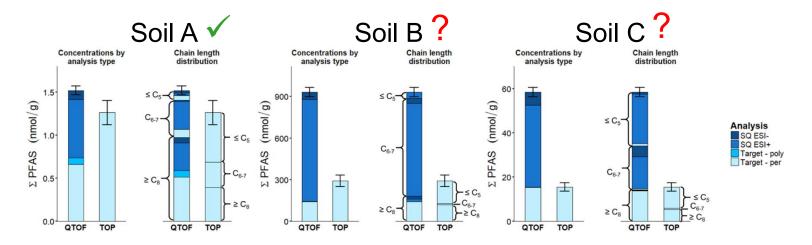
- FHxSA not detected in effluent
- Analytical standard now available for FHxSA
 - Can be added to targeted LC-MS/MS analyte list

And soils?

Existing AFFF-impacted site data suggests that **soils** may be a major repository of PFAS mass

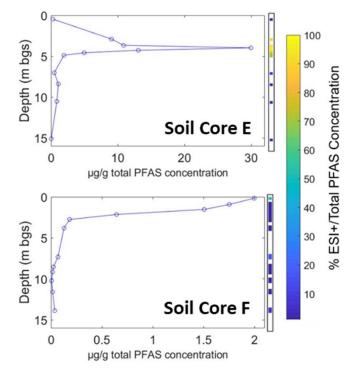

 A novel soil extraction method was used to enhance extraction of cationic and zwitterionic PFASs and analyze the extracts by LC-QToF-MS in both ESI+ and ESImodes

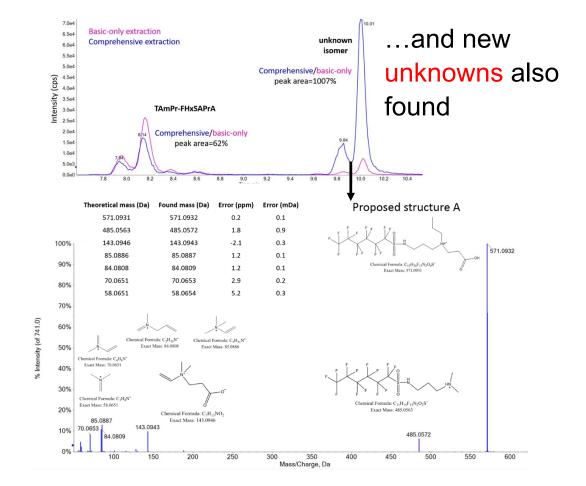
Nickerson et al. 2020, ES&T. https://doi.org/10.1021/acs.est.0c00792


ESI+ PFASs are abundant in AFFF-impacted soils

- ESI- PFASs (vs. ESI+ PFASs) not always the most abundant (semi quantitative estimates)
- Our novel method generally enhanced* extraction of PFASs

HRMS Suspect Semi-quantitation


Final characterization of soils by QTOF vs. the total oxidizable precursor (TOP) assay suggests some precursors not adequately captured via TOP (as currently employed)


- When compared to the LC-MS/MS based TOP assay, our SQ approach either agrees or is more conservative
- Importantly, chemical characteristics are maintained when using LC-QToF-MS (unlike TOP)

Nickerson et al. 2020, ES&T. https://doi.org/10.1021/acs.est.0c00792

ESI+ PFASs are important in source zone soils

Depth profiles of total PFAS concentration (SQ) and % ESI+ concentration (SQ) soil cores from two former FTAs

Conclusions

HRMS for PFASs in water samples

- Several compounds (perfluoroalkyl sulfonamides, cyclic sulfonates) appear to be present in multiple AFFF-impacted waters
- Mainly ESI- compounds observed in water
- Good news: analytical standards for some are now available
- **Bad news:** many "standard" analytical LC-MSMS lists do not include them
- HRMS for PFASs in soil samples
 - Many compounds (particularly ECF-derived zwitterions) appear to be present in multiple AFFF-impacted soils in source zones
 - Both ESI- and ESI+ compounds observed
 - Good news: analytical standards for some are now available
 - **Bad news:** "Standard" analytical LC-MSMS lists do not include them